Improving the Prediction Accuracy of Echo State Neural Networks by Anti-Oja's Learning
نویسندگان
چکیده
Echo state neural networks, which are a special case of recurrent neural networks, are studied from the viewpoint of their learning ability, with a goal to achieve their greater prediction ability. A standard training of these neural networks uses pseudoinverse matrix for one-step learning of weights from hidden to output neurons. This regular adaptation of Echo State neural networks was optimized by updating the weights of the dynamic reservoir with Anti-Oja’s learning. Echo State neural networks use dynamics of this massive and randomly initialized dynamic reservoir to extract interesting properties of incoming sequences. This approach was tested in laser fluctuations and MackeyGlass time series prediction. The prediction error achieved by this approach was substantially smaller in comparison with prediction error achieved by a standard algorithm.
منابع مشابه
Modeling neural plasticity in echo state networks for classification and regression
Echo state networks (ESNs) are one of two major neural network models belonging to the reservoir computing framework. Traditionally, only the weights connecting to the output neuron, termed read-out weights, are trained using a supervised learning algorithm, while the weights inside the reservoir of the ESN are randomly determined and remain unchanged during the training. In this paper, we inve...
متن کاملImproving the Performance of Machine Learning Algorithms for Heart Disease Diagnosis by Optimizing Data and Features
Heart is one of the most important members of the body, and heart disease is the major cause of death in the world and Iran. This is why the early/on time diagnosis is one of the significant basics for preventing and reducing deaths of this disease. So far, many studies have been done on heart disease with the aim of prediction, diagnosis, and treatment. However, most of them have been mostly f...
متن کاملMulti-Step-Ahead Prediction of Stock Price Using a New Architecture of Neural Networks
Modelling and forecasting Stock market is a challenging task for economists and engineers since it has a dynamic structure and nonlinear characteristic. This nonlinearity affects the efficiency of the price characteristics. Using an Artificial Neural Network (ANN) is a proper way to model this nonlinearity and it has been used successfully in one-step-ahead and multi-step-ahead prediction of di...
متن کاملMerging Echo State and Feedforward Neural Networks for Time Series Forecasting
Echo state neural networks, which are a special case of recurrent neural networks, are studied from the viewpoint of their learning ability, with a goal to achieve their greater prediction ability. A standard training of these neural networks uses pseudoinverse matrix for one-step learning of weights from hidden to output neurons. Such learning was substituted by backpropagation of error learni...
متن کاملPrediction of true critical temperature and pressure of binary hydrocarbon mixtures: A Comparison between the artificial neural networks and the support vector machine
Two main objectives have been considered in this paper: providing a good model to predict the critical temperature and pressure of binary hydrocarbon mixtures, and comparing the efficiency of the artificial neural network algorithms and the support vector regression as two commonly used soft computing methods. In order to have a fair comparison and to achieve the highest efficiency, a comprehen...
متن کامل